Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Dichloridobis(quinoline- κN)platinum(II)

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
Correspondence e-mail: hakwang@chonnam.ac.kr

Received 28 March 2012; accepted 29 March 2012
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$; R factor $=0.034 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=14.8$.

In the title complex, trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, the $\mathrm{Pt}^{\mathrm{II}}$ ion is fourcoordinated in an essentially square-planar coordination environment defined by two N atoms from two quinoline (qu) ligands and two Cl^{-}anions. The Pt atom is located on an inversion centre and thus the asymmetric unit contains one half of the complex; the $\mathrm{PtN}_{2} \mathrm{Cl}_{2}$ unit is exactly planar. The dihedral angle between the $\mathrm{PtN}_{2} \mathrm{Cl}_{2}$ unit and the quinoline ligand is $85.1(1)^{\circ}$. In the crystal, the complex molecules are stacked into columns along the b axis. In the columns, several intermolecular $\pi-\pi$ interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.733 (5) Å between pyridine rings.

Related literature

For the crystal structure of $(\mathrm{H}-\mathrm{qu})_{2}\left[\mathrm{PtCl}_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, see: Ha (2012a). For the crystal structures of the related $\mathrm{Pt}^{\mathrm{II}}$ complexes cis-[$\left.\mathrm{PtCl}_{2}(\mathrm{qu})_{2}\right] .0 .25 \mathrm{DMF}(\mathrm{DMF}=\mathrm{N}, \mathrm{N}$-dimethylformamide $)$ and cis-[$\left.\mathrm{PtCl}_{2}(\mathrm{qu})_{2}\right] \mathrm{CH}_{3} \mathrm{NO}_{2}$, see: Davies et al. (2001); Ha (2012b).

Experimental

Crystal data
$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=524.30$
Monoclinic, $C 2 / c$
$a=16.3722$ (18) \AA
$b=6.9543$ (7) \AA
$c=16.0422$ (17) \AA
$\beta=118.684$ (2) ${ }^{\circ}$

$$
\begin{aligned}
& V=1602.4(3) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=9.09 \mathrm{~mm}^{-1} \\
& T=200 \mathrm{~K} \\
& 0.21 \times 0.08 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.596, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$	106 parameters
$w R\left(F^{2}\right)=0.080$	H -atom parameters constrained
$S=0.97$	$\Delta \rho_{\max }=1.74 \mathrm{e}^{-3}$
1569 reflections	$\Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{N} 1$	$2.036(6)$	$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.297(2)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$89.40(18)$		

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030747).

[^0]
References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Davies, M. S., Diakos, C. I., Messerle, B. A. \& Hambley, T. W. (2001). Inorg. Chem. 40, 3048-3054.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ha, K. (2012a). Z. Kristallogr. New Cryst. Struct. 227, 31-32.
Ha, K. (2012b). Acta Cryst. E68, m491.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, m536 [doi:10.1107/S1600536812013608]

trans-Dichloridobis(quinoline- κ N) platinum(II)

Kwang Ha

Comment

The title complex, $\left[\mathrm{PtCl}_{2}(\mathrm{qu})_{2}\right]\left(\mathrm{qu}=\right.$ quinoline), was unexpected obtained as a byproduct from the reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ with qu. The main product of the rection was found as the $\mathrm{Pt}^{\mathrm{IV}}$ complex, $(\mathrm{H}-\mathrm{qu})_{2}\left[\mathrm{PtCl}_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and its crystal structure has been previously reported ($\mathrm{Ha}, 2012 a$). It seems that the $\mathrm{Pt}^{\mathrm{IV}}$ ion reduced partially to the $\mathrm{Pt}^{I \mathrm{II}}$ ion in the reaction.
In the complex, the $\mathrm{Pt}^{\mathrm{II}}$ ion is four-coordinated in an essentially square-planar coordination environment defined by two N atoms from two qu ligands and two Cl^{-}anions (Fig. 1 and Table 1). The Cl atoms are in trans conformation with respect to each other. By contrast, in the analogous $\mathrm{Pt}^{\mathrm{II}}$ complexes $\left[\mathrm{PtCl}_{2}(\mathrm{qu})_{2}\right] \cdot 0.25 \mathrm{DMF}$ ($\mathrm{DMF}=N, N$-dimethylformamide) (Davies et al., 2001) and $\left[\mathrm{PtCl}_{2}(\mathrm{qu})_{2}\right] \mathrm{CH}_{3} \mathrm{NO}_{2}\left(\mathrm{Ha}, 2012\right.$ b), the Cl atoms are in cis conformation. The cis $-\mathrm{Pt}^{\mathrm{II}}$ complexes were synthesized from the reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with qu.

The Pt atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex; the $\mathrm{PtN}_{2} \mathrm{Cl}_{2}$ unit is exactly planar. The nearly planar qu ligands, with a maximum deviation of 0.012 (7) \AA from the leastsquares plane, are parallel. The dihedral angle between the $\mathrm{PtN}_{2} \mathrm{Cl}_{2}$ unit and qu ligand is 85.1 (1) ${ }^{\circ}$. The Cl atoms are almost perpendicular to the qu planes, with the bond angle of $<\mathrm{N} 1 — \mathrm{Pt} 1-\mathrm{Cl1}=89.40(18)^{\circ}$. In the crystal, the complex molecules are arranged in a V-shaped packing pattern and stacked into two distinct columns along the b axis (Fig. 2). In the columns, several intermolecular $\pi-\pi$ interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.733 (5) \AA between pyridine rings.

Experimental

The single crystals of the title complex were obtained as a byproduct from the reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{6}(0.2432 \mathrm{~g}, 0.500$ $\mathrm{mmol})$ with quinoline $(0.1569 \mathrm{~g}, 1.215 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. After refluxing of the reaction mixture for 3 h , the formed brown precipitate was removed by filtration, and the solvent of the filtrate was evaporated. The residue was washed with $\mathrm{H}_{2} \mathrm{O}$ /acetone (1:5) and dried at $50^{\circ} \mathrm{C}$, to give a yellow powder (0.2072 g) (Ha, 2012a). Crystals suitable for X-ray analysis were obtained by slow evaporation at $60^{\circ} \mathrm{C}$ from an N, N-dimethylformamide (DMF) solution, which was obtained after filtration of the product over the solid-phase extraction column $(4 \mathrm{ml})$ with silica $(200 \mathrm{mg})$.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms: $\mathrm{C}-\mathrm{H}=0.95 \AA$ with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The highest peak $\left(1.74 \mathrm{e}^{-3}\right)$ and the deepest hole $\left(-0.97 \mathrm{e} \AA^{-3}\right)$ in the difference Fourier map are located $1.10 \AA$ and $1.51 \AA$, respectively, from the atoms Pt1 and N1.

Computing details

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare
material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
A view of the molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level and the atom numbering. Unlabelled atoms are related to the reference atoms by the $(-x, 1-y,-z)$ symmetry transformation.

Figure 2
A view of the unit-cell contents of the title complex.

trans-Dichloridobis(quinoline- κN) platinum(II)

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=524.30$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=16.3722$ (18) \AA
$b=6.9543$ (7) Å
$c=16.0422$ (17) \AA
$\beta=118.684$ (2) ${ }^{\circ}$
$V=1602.4$ (3) \AA^{3}
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
$F(000)=992$
$D_{\mathrm{x}}=2.173 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2043 reflections
$\theta=2.8-25.9^{\circ}$
$\mu=9.09 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, yellow
$0.21 \times 0.08 \times 0.07 \mathrm{~mm}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.596, T_{\max }=1.000$

4630 measured reflections
1569 independent reflections
1025 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.080$
$S=0.97$
1569 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.9^{\circ} \\
& h=-20 \rightarrow 17 \\
& k=-8 \rightarrow 8 \\
& l=-19 \rightarrow 19
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Pt1	0.0000	0.5000	0.0000	$0.02655(16)$
C11	$-0.01185(14)$	$0.3931(3)$	$0.12923(14)$	$0.0373(5)$
N1	$0.1091(4)$	$0.3178(9)$	$0.0354(4)$	$0.0270(15)$
C1	$0.0927(5)$	$0.1473(11)$	$-0.0038(5)$	$0.0297(19)$
H1	0.0304	0.1167	-0.0492	0.036^{*}
C2	$0.1608(6)$	$0.0079(12)$	$0.0170(6)$	$0.0353(18)$
H2	0.1455	-0.1133	-0.0141	0.042^{*}
C3	$0.2506(6)$	$0.0500(11)$	$0.0836(6)$	$0.036(2)$
H3	0.2986	-0.0426	0.0998	0.043^{*}
C4	$0.2710(5)$	$0.2304(11)$	$0.1273(5)$	$0.0247(17)$
C5	$0.3626(5)$	$0.2867(13)$	$0.1961(5)$	$0.036(2)$
H5	0.4125	0.1982	0.2142	0.043^{*}
C6	$0.3801(6)$	$0.4626(12)$	$0.2362(6)$	$0.036(2)$
H6	0.4416	0.4970	0.2821	0.043^{*}
C7	$0.3073(6)$	$0.5943(14)$	$0.2100(6)$	$0.037(2)$
H7	0.3201	0.7184	0.2382	0.044^{*}
C8	$0.2177(6)$	$0.5482(11)$	$0.1443(6)$	$0.031(2)$
H8	0.1691	0.6393	0.1275	0.037^{*}
C9	$0.1986(5)$	$0.3668(11)$	$0.1025(5)$	$0.0257(18)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.0162(2)$	$0.0315(2)$	$0.0279(2)$	$0.0031(3)$	$0.00741(16)$	$0.0021(3)$
C11	$0.0322(11)$	$0.0474(13)$	$0.0335(10)$	$0.0094(11)$	$0.0169(9)$	$0.0103(11)$
N1	$0.016(3)$	$0.031(4)$	$0.033(3)$	$0.000(3)$	$0.011(3)$	$0.003(3)$
C1	$0.023(4)$	$0.027(5)$	$0.033(4)$	$-0.003(4)$	$0.009(4)$	$-0.005(4)$
C2	$0.041(5)$	$0.025(4)$	$0.045(4)$	$0.001(5)$	$0.025(4)$	$0.001(5)$
C3	$0.034(5)$	$0.037(6)$	$0.045(5)$	$0.011(4)$	$0.025(4)$	$0.011(4)$
C4	$0.025(4)$	$0.023(4)$	$0.033(4)$	$0.002(3)$	$0.018(4)$	$0.007(4)$
C5	$0.019(4)$	$0.050(6)$	$0.036(5)$	$0.008(4)$	$0.011(4)$	$0.009(4)$
C6	$0.025(4)$	$0.054(7)$	$0.029(4)$	$0.000(4)$	$0.013(4)$	$0.000(4)$
C7	$0.030(5)$	$0.042(5)$	$0.033(4)$	$-0.005(4)$	$0.011(4)$	$-0.008(4)$
C8	$0.023(4)$	$0.036(6)$	$0.034(4)$	$0.001(3)$	$0.014(4)$	$-0.005(4)$
C9	$0.022(4)$	$0.030(5)$	$0.026(4)$	$0.002(4)$	$0.013(4)$	$0.004(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

Pt1-N1 ${ }^{\text {i }}$	2.036 (6)	C3-H3	0.9500
Pt1-N1	2.036 (6)	C4-C9	1.418 (10)
$\mathrm{Pt1}-\mathrm{Cl}^{1}{ }^{\text {i }}$	2.297 (2)	C4-C5	1.425 (10)
Pt1-Cl1	2.297 (2)	C5-C6	1.347 (10)
N1-C1	1.308 (9)	C5-H5	0.9500
N1-C9	1.382 (9)	C6-C7	1.398 (12)
$\mathrm{C} 1-\mathrm{C} 2$	1.392 (10)	C6-H6	0.9500
C1-H1	0.9500	C7-C8	1.371 (11)
C2-C3	1.371 (12)	C7-H7	0.9500
C2-H2	0.9500	C8-C9	1.392 (11)
C3-C4	1.398 (10)	C8-H8	0.9500
N1 ${ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{N} 1$	180.0	C3-C4-C9	119.6 (7)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{Cl}^{\text {i }}$	89.40 (18)	C3-C4-C5	123.0 (8)
N1-Pt1- $\mathrm{Cl1}^{1}$	90.60 (18)	C9-C4-C5	117.4 (7)
N1 ${ }^{\text {i }} \mathrm{Pt1}$ - Cl 1	90.60 (18)	C6-C5-C4	121.5 (8)
N1-Pt1-Cl1	89.40 (18)	C6-C5-H5	119.2
$\mathrm{Cl1} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	180.00 (10)	C4-C5-H5	119.2
C1-N1-C9	119.7 (7)	C5-C6-C7	119.7 (8)
C1-N1-Pt1	118.7 (5)	C5-C6-H6	120.1
C9—N1—Pt1	121.6 (5)	C7-C6-H6	120.1
N1-C1-C2	124.0 (7)	C8-C7-C6	121.4 (8)
N1-C1-H1	118.0	C8- 7 7-H7	119.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.0	C6-C7-H7	119.3
C3-C2-C1	118.3 (8)	C7-C8-C9	119.5 (7)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.8	C7-C8-H8	120.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.8	C9-C8-H8	120.2
C2-C3-C4	119.4 (8)	N1-C9-C8	120.6 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.3	N1-C9-C4	119.0 (7)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3	C8-C9-C4	120.5 (7)
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	-86.2 (6)	C5-C6-C7-C8	0.3 (13)

supplementary materials

$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	$93.8(6)$
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 9$	$96.8(5)$
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 9$	$-83.2(5)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.6(12)$
$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-177.7(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.9(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.6(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$0.2(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.1(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.2(8)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.1(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.2(12)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.2(12)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$179.3(7)$
$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$-3.7(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 4$	$0.1(10)$
$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 4$	$177.1(5)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-179.3(7)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$-0.1(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{N} 1$	$0.1(11)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{N} 1$	$179.4(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-179.1(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$0.2(11)$

Symmetry code: (i) $-x,-y+1,-z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5260).

